Immunoelectron microscopic evidence that GLUT4 translocation explains the stimulation of glucose transport in isolated rat white adipose cells.

نویسندگان

  • D Malide
  • G Ramm
  • S W Cushman
  • J W Slot
چکیده

We used an improved cryosectioning technique in combination with quantitative immunoelectron microscopy to study GLUT4 compartments in isolated rat white adipose cells. We provide clear evidence that in unstimulated cells most of the GLUT4 localizes intracellularly to tubulovesicular structures clustered near small stacks of Golgi and endosomes, or scattered throughout the cytoplasm. This localization is entirely consistent with that originally described in brown adipose tissue, strongly suggesting that the GLUT4 compartments in white and brown adipose cells are morphologically similar. Furthermore, insulin induces parallel increases (with similar magnitudes) in glucose transport activity, approximately 16-fold, and cell-surface GLUT4, approximately 12-fold. Concomitantly, insulin decreases GLUT4 equally from all intracellular locations, in agreement with the concept that the entire cellular GLUT4 pool contributes to insulin-stimulated exocytosis. In the insulin-stimulated state, GLUT4 molecules are not randomly distributed on the plasma membrane, but neither are they enriched in caveolae. Importantly, the total number of GLUT4 C-terminal epitopes detected by the immuno-gold method is not significantly different between basal and insulin-stimulated cells, thus arguing directly against a reported insulin-induced unmasking effect. These results provide strong morphological evidence (1) that GLUT4 compartments are similar in all insulin-sensitive cells and (2) for the concept that GLUT4 translocation almost fully accounts for the increase in glucose transport in response to insulin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hormonal regulation of glucose transport in a brown adipose cell preparation isolated from rats that shows a large response to insulin.

Isolated brown adipose cells from rats are prepared whose viability is indicated by the expected stimulation of oxygen consumption by noradrenaline and counter-regulation of this oxygen consumption response by insulin. Insulin stimulates 3-O-methyl-D-glucose transport by approx. 15-fold in the absence of adenosine, and adenosine augments this response at least 2-fold. The insulin-stimulated tra...

متن کامل

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells.

It has been shown that the combination of benzylamine or tyramine and low concentrations of vanadate markedly stimulates glucose transport in rat adipocytes by a mechanism that requires semicarbazide-sensitive amine oxidase (SSAO) activity and H(2)O(2) formation. Here we have further analysed the insulin-like effects of the combination of SSAO substrates and vanadate and we have studied the sig...

متن کامل

Phosphatidylinositol 4-kinase, but not phosphatidylinositol 3-kinase, is present in GLUT4-containing vesicles isolated from rat skeletal muscle.

Insulin stimulates the rate of glucose transport into muscle and adipose cells by translocation of glucose transporter (GLUT4)-containing vesicles from an intracellular storage pool to the surface membrane. This event is mediated through the insulin receptor substrates (IRSs), which in turn activate phosphatidylinositol (PI) 3-kinase isoforms. It has been suggested that insulin causes attachmen...

متن کامل

Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells.

Stimulation of glucose transport is among the most important metabolic actions of insulin. Studies in adipose cells have demonstrated that insulin stimulates its receptor to phosphorylate tyrosine residues in IRS-1, leading to activation of phosphatidylinositol 3-kinase, which plays a necessary role in mediating the translocation of the insulin-responsive glucose transporter GLUT4 to the cell s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 113 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2000